

Vorwort

Sehr geehrte Leserinnen und Leser,

wir freuen uns, dass Sie sich für den Prüfplan dieses Praxistests interessieren. Dieses Dokument gibt Ihnen einen umfassenden Überblick über die Methoden und Verfahren, mit denen wir den praktischen Teil des Tests ausgewertet haben. Unser Ziel ist es, Ihnen eine transparente und nachvollziehbare Grundlage zur Verfügung zu stellen, die es Ihnen ermöglicht, die Qualität und Eignung der getesteten Produkte eigenständig zu beurteilen.

In diesem Dokument wird detailliert erläutert, wie die Kriterien im praktischen Teil dieses Tests bewertet wurden und wie die Punkteverteilung zustande kam. Ein besonderes Merkmal unserer Tests ist, dass die Produkte von Verbrauchern in realen Anwendungssituationen geprüft werden, anstatt in einem Laborumfeld. Dies stellt sicher, dass die Ergebnisse die tatsächliche Nutzererfahrung widerspiegeln und für Sie als Verbraucher besonders relevant sind, aber dadurch auch subjektive Eindrücke wiedergeben können. Unsere Praxistests sind auf eine Dauer von zwei bis drei Wochen ausgelegt, um eine realistische und praxisnahe Bewertung zu gewährleisten.

Wenn Sie sich auch für die Bewertung unserer anderen Testkriterien wie Verpackung und Inhalt, Produktverarbeitung und Erscheinungsbild oder Preis-Leistungs-Verhältnis interessieren, können Sie dies in unserem allgemeingültigen Dokument zum Evaluierungsprozess nachlesen. Wir testen die Kriterien nach einem standardisierten Verfahren. In diesem Dokument, dem Prüfplan, liegt der Fokus ausschlielich darauf, wie der Praxistest durchgeführt wurde. Dieser Teil variiert von Produkt zu Produkt und ist daher nicht standardisierbar. Aus diesem Grund erstellen wir für jedes Produkt einen individuellen Prüfplan, der transparent zugänglich ist.

Inhalt und Aufbau des Dokuments:

1. Testdurchführung

In diesem Abschnitt wird detailliert beschrieben, wie die Tests durchgeführt wurden. Jeder Testschritt wird präzise erläutert, um die Nachvollziehbarkeit der Ergebnisse sicherzustellen. Die Testdurchführung ist in mehrere Schritte unterteilt, die für jedes Kriterium spezifisch beschrieben werden.

2. Punkteverteilung

Dieser Abschnitt gibt einen Überblick über die Bewertungsskala, nach der die Punkte vergeben wurden. Die Punkteverteilung wird für jedes Kriterium separat dargestellt, sodass die Leistung der Produkte in den verschiedenen Bereichen nachvollzogen werden kann.

Unser Prüfplan zielt darauf ab, eine umfassende und transparente Bewertung der Produkte zu gewährleisten. Durch die detaillierte Beschreibung der Testmethoden und die klare Punkteverteilung möchten wir Ihnen ein zuverlässiges Werkzeug an die Hand geben, um fundierte Entscheidungen treffen zu knnen.

Auf den nächsten Seiten werden die einzelnen Prüfkriterien, die detaillierte Testdurchführung sowie die Punkteverteilung genauer erläutert.

Ihr Prüfengel Team

1. Sicherheit des Gehäuses

Testdurchführung:

Schritt 1: Sichtprüfung

Das Gehäuse der mobilen Ladestation wurde sorgfältig auf sichtbare Schäden, wie Risse oder große Kratzer, inspiziert. Dabei erfolgte eine systematische Untersuchung jeder Gehäuseseite. Zusätzlich wurde die Stabilität des Materials durch kontrollierten, sanften manuellen Druck geprüft, um sicherzustellen, dass keine schwachen Stellen vorhanden sind.

Schritt 2: Schlagtest

Ein gezielter Schlagtest mit einem Gummihammer wurde ausgeführt, um die Robustheit des Gehäuses zu evaluieren. Der Schlag wurde mit einer definierten Kraft und in einem kontrollierten Winkel durchgeführt, um eine gleichmäßige Belastung zu gewährleisten. Das Ziel war es zu überprüfen, ob das Gehäuse mechanischen Belastungen standhält, die bei normalen Betriebsbedingungen auftreten könnten.

Schritt 3: Belastungstest

Eine gleichmäßig verteilte Last von 10 kg wurde für eine festgelegte Zeitspanne sorgfältig auf das Gehäuse gelegt. Dabei wurde beobachtet, ob das Gehäuse strukturelle Veränderungen zeigt oder seine Form beibehält. Dieser Test sollte die Tragfähigkeit und die Materialfestigkeit des Gehäuses unter Druckbedingungen simulieren.

Punkteverteilung:

100 Punkte: Das Gehäuse zeigt nach Abschluss sämtlicher Tests keine sichtbaren Schäden, bleibt vollständig intakt und erfüllt alle festgelegten Sicherheitsanforderungen ohne Kompromisse.

90 Punkte: Nach den Tests sind minimale oberflächliche Kratzer zu finden. Diese haben jedoch keinen Einfluss auf die Funktion und die ästhetische Erscheinung bleibt nahezu unverändert.

80 Punkte: Es sind kleinere Dellen oder Kratzer sichtbar, die jedoch keinen Einfluss auf die Funktionsfähigkeit des Gehäuses haben. Die Struktur bleibt stabil.

70 Punkte: Leichte Dellen sind vorhanden, aber es gibt keine Risse oder Brüche. Die Funktion des Gehäuses bleibt unbeeinträchtigt.

60 Punkte: Das Gehäuse weist sichtbare Dellen auf, was zu einer leichten Funktionseinschränkung führen könnte. Die Stabilität bleibt weitgehend erhalten.

50 Punkte: Deutliche Dellen und erste Risse treten auf, die das Gehäuse beeinträchtigen. Eine verstärkte mechanische Belastung könnte die Funktion weiter einschränken.

40 Punkte: Größere Risse sind sichtbar und das Gehäuse wirkt instabil. Die Sicherheit und Funktion sind ernsthaft gefährdet.

30 Punkte: Deutliche Schäden am Gehäuse sind vorhanden, die Funktion ist stark beeinträchtigt und die Weiterverwendung könnte riskant sein.

20 Punkte: Das Gehäuse bricht unter der Belastung zusammen, es bestehen erhebliche strukturelle Defizite, die die Verwendung unmöglich machen.

10 Punkte: Das Gehäuse ist nicht mehr funktionstüchtig und kann seine primären Aufgaben nicht mehr erfüllen. Eine Reparatur ist dringend erforderlich.

2. Kompatibilität mit verschiedenen Elektroauto-Modellen

Testdurchführung:

Schritt 1: Kompatibilitätscheck

Im ersten Schritt wurde die Ladestation nacheinander an eine Auswahl unterschiedlicher Elektroauto-Modelle angeschlossen. Dabei wurde vor allem geprüft, ob die physische Verbindung zwischen der Station und dem Auto fehlerfrei hergestellt werden kann. Dazu gehörte das Einrasten des Ladesteckers in die Buchse des Fahrzeugs sowie die richtige Erkennung durch das Fahrzeug, dass es sich um eine anerkannte Ladestation handelt. Es wurde darauf geachtet, ob alle notwendigen Einrichtungsprozesse des Ladesystems problemlos ablaufen.

Schritt 2: Ladeprozess-Test

Im zweiten Schritt wurde bei jedem erfolgreich angeschlossenen Modell der Ladeprozess initiiert. Dies beinhaltete das Starten und Überwachen des Ladevorgangs, um sicherzustellen, dass die Ladestation den Stromfluss ohne Unterbrechungen und in der erwarteten Effizienz bereitstellen kann. Zusätzlich wurden auch auftretende Fehlermeldungen oder Unregelmäßigkeiten dokumentiert, um die Gesamtbekömmlichkeit des Ladevorgangs zu überprüfen.

Schritt 3: Datenübertragungstest

Der dritte Schritt konzentrierte sich auf die Datenkommunikation zwischen der Ladestation und den Fahrzeugen. Es wurde genau beobachtet, ob die Ladestation in der Lage ist, relevante Informationen wie den aktuellen Ladezustand, die verbleibende Ladezeit und andere nützliche Diagnosedaten korrekt an das Fahrzeug zu übermitteln. Dies beinhaltete die Überprüfung, ob alle übermittelten Daten sowohl auf der Station als auch im Fahrzeugdisplay konsistent angezeigt wurden.

Punkteverteilung:

100 Punkte: Vollständige Kompatibilität, wenn die Ladestation alle getesteten Modelle ohne jegliche Anpassung oder Fehler unterstützt, sowohl bei der Verbindung, dem Ladeprozess und der Datenübertragung.

90 Punkte: Die Ladestation funktioniert mit allen getesteten Modellen, jedoch sind kleinere Anpassungen erforderlich, die jedoch schnell und einfach vorgenommen werden können, ohne den Ladevorgang zu beeinträchtigen.

80 Punkte: Die Ladestation ist mit den meisten der getesteten Modelle kompatibel und zeigt nur bei wenigen Ausnahmen leichte Verzögerungen oder Unregelmäßigkeiten, die jedoch nicht die grundlegende Funktionalität beeinträchtigen.

70 Punkte: Einige Modelle zeigen bestimmte Probleme beim Anschluss oder während des Ladevorgangs, jedoch bleibt die Ladestation grundsätzlich funktionsfähig und kann die Hauptaufgaben wie das Laden und Datenübertragen erfüllen.

60 Punkte: Mehrere der getesteten Modelle zeigen signifikante Verbindungsprobleme, die den Ladebeginn verzögern oder instabil machen, auch wenn die grundsätzliche Funktionalität zeitweise gegeben ist.

50 Punkte: Die Ladestation ist nur mit einer kleinen Auswahl der getesteten Modelle kompatibel, wobei bei den meisten Modellen größere Komplikationen auftreten.

40 Punkte: Eine Mehrheit der getesteten Modelle zeigt Inkompatibilität, sei es in der Verbindung, im Ladevorgang oder bei der Datenübertragung, sodass der Test diese Modelle als unzureichend unterstützt bewertet.

30 Punkte: Es gibt nur sehr wenige Modelle, die ohne Probleme mit der Ladestation arbeiten, und die meisten Modelle weisen ernsthafte Inkompatibilitäten auf, die den Ladevorgang stark beeinträchtigen.

20 Punkte: Nur ein einziges Modell aus der getesteten Auswahl funktioniert weitgehend ohne Fehler mit der Ladestation, alle anderen Modelle sind unbrauchbar.

10 Punkte: Bei keinem der getesteten Modelle konnte eine erfolgreiche Kompatibilität in Bezug auf Verbindung, Laden und Datenübertragung festgestellt werden.

3. Funktionalität der LED-Anzeigen

Testdurchführung:

Schritt 1: Sichtprüfung

Im ersten Schritt der Sichtprüfung wurden alle LED-Anzeigen sorgfältig auf ihre Sichtbarkeit und Klarheit bei verschiedenen Lichtverhältnissen überprüft. Dazu wurden die LEDs sowohl bei vollem Tageslicht als auch in einer abgedunkelten Umgebung betrachtet, um sicherzustellen, dass die Anzeigen unter verschiedenen Bedingungen gut erkennbar sind und ihre Helligkeit den Anforderungen entspricht.

Schritt 2: Funktionsprüfung

Im zweiten Schritt wurden die LED-Anzeigen während eines simulierten Ladevorgangs auf ihre funktionale Korrektheit getestet. Dabei wurde darauf geachtet, dass jede LED die richtigen Informationen anzeigt und ordnungsgemäß funktioniert. Hierbei wurde überprüft, ob die LEDs die vorgesehenen Anzeigen wie Ladezustand, Fehleranzeigen oder Statusmeldungen korrekt und gut lesbar darstellen.

Schritt 3: Kurzschluss-Simulation

Im dritten Schritt fand eine Kurzschluss-Simulation statt, bei der eine kurze Unterbrechung des Stromflusses herbeigeführt wurde. Ziel dieser Simulation war es, die Reaktion der LED-Anzeigen auf unerwartete Störungen zu testen. Es wurde beobachtet, ob die LEDs nach der Störung ihre Funktion wieder ordnungsgemäß aufnehmen und ob inkorrekte Anzeigen oder Ausfälle auftreten.

Punkteverteilung:

100 Punkte: Alle LEDs zeigen unter allen Testbedingungen eine einwandfreie und genaue Funktionalität, ohne jegliche Beeinträchtigung der Sichtbarkeit oder Informationsdarstellung.

90 Punkte: Es traten leichte Unstimmigkeiten in der Anzeige auf, die jedoch minimal und kaum sichtbar waren. Die LEDs waren dennoch klar erkennbar und die Informationen korrekt.

80 Punkte: Einige der LED-Anzeigen waren leicht gedimmt, wodurch die Sichtbarkeit etwas eingeschränkt war. Die dargestellten Informationen blieben jedoch lesbar und korrekt.

70 Punkte: Die LEDs wiesen Probleme mit der Helligkeit auf, die Funktion war jedoch nicht beeinträchtigt. Die wesentlichen Informationen konnten noch erkannt werden.

60 Punkte: Mehrere LEDs zeigten inkorrekte Informationen oder waren nicht mehr gut erkennbar. Trotzdem waren die wichtigsten Anzeigen funktional.

50 Punkte: Teilweiser Ausfall der Anzeigen, einige wichtige Informationen waren noch sichtbar, jedoch mit deutlicher Einschränkung der Funktionalität.

40 Punkte: Mehrere LEDs waren komplett ausgefallen, was die Anzeige wichtiger Informationen stark beeinträchtigte.

30 Punkte: Die Mehrheit der LEDs funktionierte nicht mehr, nur noch wenige Anzeigen waren sichtbar, die jedoch keine vollständige Informationsdarstellung ermöglichen.

20 Punkte: Nur eine LED zeigte korrekte Informationen an, alle anderen Anzeigen waren funktionsunfähig.

10 Punkte: Keine der LED-Anzeigen war funktionsfähig, es wurden keinerlei Informationen mehr korrekt angezeigt.

4. Schutz gegen Wasser und Staub (IP-Schutzart)

Testdurchführung:

Schritt 1: Staubtest

Die Ladestation wurde für den Staubtest in einer kontrollierten Umgebung platziert, die eine hohe Konzentration von feinen Staubpartikeln aufwies. Über einen festgelegten Zeitraum wurde die Ladestation in diesem staubigen Umfeld betrieben, um ihre Fähigkeit zu überprüfen, das Eindringen von Staub zu verhindern. Während dieses Tests wurde besonders darauf geachtet, dass die Lüftungsschlitze und Anschlusspunkte der Station nicht durch Staub blockiert wurden, um die volle Funktionsfähigkeit zu gewährleisten.

Schritt 2: Wassertest

Der Wassertest wurde mithilfe eines leicht befeuchteten Tuchs durchgeführt, mit dem die äußere Oberfläche der Ladestation vorsichtig abgewischt wurde. Dieses Verfahren simuliert das Szenario von Spritzwasser oder Nieselregen, ohne die empfindliche Elektronik der Station zu gefährden. Dabei wurde aufgepasst, dass kein Wasser in die inneren Bestandteile der Ladestation eindringt. Die Reaktion des Geräts auf die Feuchtigkeit wurde genau beobachtet, um etwaige Störungen umgehend zu erkennen.

Schritt 3: Funktionstest nach Belastung

Nach Abschluss der Staub- und Wassertests fand eine umfassende Funktionsprüfung der Ladestation statt. Hierbei wurden alle wesentlichen Funktionen der Station durchlaufen, um die Beeinträchtigung oder den Ausfall von Funktionen infolge der vorherigen Tests auszuschließen. Ziel war es festzustellen, ob Staubpartikel oder Wasserrückstände die Betriebsfähigkeit der Station in irgendeiner Weise negativ beeinflusst haben.

Punkteverteilung:

- 100 Punkte: Die Ladestation zeigt nach den Tests keinerlei Einschränkungen in der Funktionsfähigkeit, und es wurden keinerlei Staub- oder Wasserreste festgestellt, die die Performance beeinträchtigen könnten.
- 90 Punkte: Die Station bleibt voll funktionsfähig, jedoch sind geringe Rückstände von Staub oder eine minimale Wasserfilm auf der Oberfläche erkennbar, die jedoch keine Auswirkungen auf die Funktion haben.
- 80 Punkte: Es wird eine leichte Ansammlung von Staubpartikeln oder minimalem Wasser festgestellt. Die Betriebsfähigkeit der Station wird dadurch nicht beeinträchtigt und bleibt stabil.
- 70 Punkte: Die Überprüfung zeigt sichtbare Ansammlungen von Staub oder Wasser auf der Oberfläche, trotzdem arbeitet die Station erwartungsgemäß und bleibt funktionstüchtig.
- 60 Punkte: Staub oder Wasser hat begonnen, die Funktionsweise der Station leicht zu behindern, was zu minimalen Unstimmigkeiten im Betrieb führt, jedoch nicht kritisch ist.
- 50 Punkte: Es befinden sich deutliche Staubansammlungen oder Wasserrückstände, die die Funktion der Station einschränken können, was zu gelegentlich beeinträchtigtem Betrieb führt.
- 40 Punkte: Die hohen Ansammlungen von Staub oder Wasser beeinträchtigen mehrere Funktionen der Station signifikant, was deutlich zu einem verminderten Betriebsergebnis führt.
- 30 Punkte: Das Eindringen von Staub oder Wasser hat die Funktion der Station stark beeinträchtigt, und es treten erhebliche Störungen im Betrieb auf.
- 20 Punkte: Das Gerät zeigt infolge des Testens vorhandene Fehlfunktionen, die eindeutig auf das Eindringen von Staub oder Wasser zurückzuführen sind.
- 10 Punkte: Aufgrund des umfangreichen Eindringens von Staub oder Wasser ist die Ladestation nicht mehr funktionsfähig. Sämtliche Hauptfunktionen sind ausgefallen.

5. Funktion der automatischen Abschaltung bei vollem Akku

Testdurchführung:

Schritt 1: Ladevorgang starten

Zu Beginn des Tests wurde der Ladevorgang bewusst mit einem fast vollständig geladenen Akku initiiert. Dieser Schritt diente dazu, die Reaktionsfähigkeit der automatischen Abschaltfunktion zu evaluieren. Dabei wurde sichergestellt, dass der Akku schon eine hohe Ladung aufwies, um eine realitätsnahe Testbedingung zu schaffen, da die Abschaltfunktion hauptsächlich in diesem Stadium kritisch ist.

Schritt 2: Überwachung des Ladeprozesses

Während der gesamte Ladevorgang ablief, wurde der Prozess minutiös überwacht. Alle relevanten Parameter wie die verbleibende Ladezeit, die aktuelle Akkuladung in Prozent und die Spannung wurden kontinuierlich aufgezeichnet. Ziel war es, den exakten Zeitpunkt zu bestimmen, wann der Ladevorgang stoppt, um präzise Aussagen über die Funktionsweise der Abschaltung treffen zu können.

Schritt 3: Prüfung der Abschaltung

Nach der Beendigung des Ladeprozesses wurde geprüft, ob die automatische Abschaltung wie erwartet ausgelöst wurde. Es wurde analysiert, ob der Ladevorgang tatsächlich beendet ist und ob keine zusätzlichen Stromzufuhr stattfindet. Dies sollte sicherstellen, dass keine Überladung des Akkus erfolgt und die Abschaltung ordnungsgemäß zur Schonung der Akkulebensdauer funktioniert.

Punkteverteilung:

- 100 Punkte: Die Abschaltung erfolgt genau in dem Moment, in dem der Akku vollständig geladen ist, ohne jegliche Verzögerung und ohne Anzeichen einer Überladung. Das System arbeitet optimal und stoppt den Ladevorgang exakt zur idealen Zeit.
- 90 Punkte: Die Abschaltung tritt mit einer geringen Verzögerung ein, jedoch wird keine Überladung beobachtet. Der Ladevorgang wird nahezu rechtzeitig beendet und der Akku bleibt im sicheren Bereich.
- 80 Punkte: Bei der Mehrzahl der Versuche funktioniert die automatische Abschaltung korrekt. Es kommt lediglich in sehr wenigen Fällen zu minimalen Zeitabweichungen, die jedoch keine wesentliche Gefahr darstellen.
- 70 Punkte: Ab und zu treten Verzögerungen bei der Abschaltung auf, jedoch bleibt der Gesamtprozess im tolerierbaren Rahmen und es erfolgt keine riskante Überladung.
- 60 Punkte: Mehrere Versuche zeigen signifikante Verzögerungen, die auf inkonsistente Erkenntnisse über den Ladezustand des Akkus hinweisen. Eine klare Verbesserung der Abschaltzeit ist erforderlich.
- 50 Punkte: Die Abschaltung funktioniert unregelmäßig; in einem großen Teil der Tests konnte keine zuverlässige Auslösung festgestellt werden.
- 40 Punkte: In vielen Fällen wurde eine Überladung des Akkus erkannt, was auf ein schwerwiegendes Problem in der Abschaltlogik hinweist.
- 30 Punkte: Häufig bleibt die Abschaltung komplett aus und der Ladevorgang wird erst unterbrochen, wenn manuell eingegriffen wird oder andere Sicherheitsmechanismen greifen.
- 20 Punkte: Die Abschaltung erfolgt nur noch bei manueller Intervention. Das System erkennt die Vollladung des Akkus nicht eigenständig und zuverlässig.
- 10 Punkte: Es gibt keine funktionierende automatische Abschaltung; der Ladevorgang läuft bei vollem Akku kontinuierlich weiter ohne Unterbrechung durch das System.